

WHOLE LIFE INSURANCE

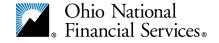
How to measure (and not measure) whole life efficiency

How do you compare cars? If you want to drive quickly, you can measure a car's acceleration and its top speed. If you are interested in fuel economy, you can measure miles per gallon in the city and on the highway. If you are interested in safety, there are ratings for that too.

But it gets harder when you try to measure and compare the relative effectiveness of different companies' whole life insurance policies for a specific purpose, like generating cash flow in retirement. There isn't a third-party organization like Consumer Reports or a publication like Car and Driver to critique, compare and rank life insurance policies. While it's a bit easier to measure a policy's efficiency at purchasing death benefit, things get a bit trickier when you're trying to determine its effectiveness at accumulating and distributing cash value. The financial professional is often left to rely on the comparative measures and marketing claims provided by the life insurance company. (Like this piece.) Two of the most commonly touted whole life "quality" measures? The company's current Dividend Interest Rate (DIR) and the internal rate of return (IRR) on cash value. Unfortunately, both are poor measures of a whole life product's quality.

Using DIR to Compare: Pretending temporary conditions are permanent

NAIC illustration regulations are both a blessing and a curse. While the required consistency helps level the playing field for comparison, other guidelines for embedded assumptions lay the foundation for competitive illustration


gamesmanship, and potentially false or inflated performance expectations in policyholders. (And this isn't unique to Whole Life)

One of these dangerous illustrated assumptions is that any company's current DIR will hold steady for the life of the policy. Or, that a current gap between the respective DIRs of two compared products reflects a permanent deficiency/ advantage between the two.

Let's be clear: Neither of those assumptions are accurate. History shows that every company issuing participating whole life policies has increased and decreased their DIRs to adjust to the environment when needed.

Current DIRs are temporary, driven by today's economic conditions. Remember, dividends originated as a return of "excess" premiums to policyholders, when a carrier's results for expense management, mortality experience, and investment returns were more favorable than what was originally assumed in the traditionally conservative assumptions that go into whole life pricing and design.

That's what they used to be. They're not anymore. Dividend interest rates are now significantly driven by competitive conditions, where external pressures push carriers to provide

"dividend support" – that is, to maintain a higher DIR than the current environment would logically support. What's the incentive to the carrier to maintain an unnaturally high DIR? First, it's an easy and attractive marketing point. Companies tout their DIR all the time – when it is comparatively good. How often are you shown a comparison that goes back thirty or forty years? One that discusses the ups and downs during a full policy life cycle? And, do you ever see a disclaimer that reads past performance (and the current DIR) is not indicative of future results?

The second motivation has the potential to set false expectations: Temporarily boosting or maintaining an unnaturally high DIR (even if it can't be maintained) makes current proposals and illustrations look better, helping to drive new sales. The company is likely choosing to reduce that product's profit margins beneath what they had originally priced in the product's design. Every year that practice is maintained eats into the product's profitability more and more. Can any company in any industry afford to do that for the long-term? No.

A quick DIR case study

The table below shows three company DIR sets over the past thirty years and the average during that time. Thinking about performance over time can be much more useful than looking at the DIR in any single year.

	2020	2010	2000	1990	DIR Average 1990- 2020
Ohio National	5.20%	6.40%	8.30%	10.55%	7.38%
New York Life	6.00%	6.11%	7.90%	10.25%	7.16%
Penn Mutual	6.10%	6.34%	7.40%	9.93%	7.22%

It's plain to see that in 2020 Ohio National's DIR is lower than either or the other companies. But if you look at 2010 or 2000 or 1990, Ohio National is now #1. Does that mean the products were better then? No. it means that in those years Ohio National had a higher DIR than either of the other two carriers for some particular reason. Today, both carriers have a higher DIR, for some particular reason. But DIR advantages are temporary; they really don't speak to the permanent quality of the policy or the issuing company.

Long term, no insurance company has a portfolio of assets that significantly out-performs their peers. All insurance companies place the bulk of their investable assets in high grade corporate bonds and commercial mortgages. And while there have been periods of time when one carrier or another got a temporary edge, everything always returned to normal patterns and yields. Which means every whole life carrier on a long-term basis should have similar DIR

rates, irrespective of what they illustrate today. The final column of the table shows exactly that point as the 30-year average takes out spikes and simply compares over the long-term. And isn't that really what we should remember about projections and DIR? That long-term you won't see big differences? And if that's the case, does it make any sense to compare products with widely different DIR today, and actually believe that the resulting comparison holds any value?

Using IRR to compare: Building policyholder expectations on sand

While whole life illustrations have always outlined the guaranteed and projected cash values of a policy, it was only a few decades ago that supplemental reports entered the scene, with new measures meant to help agents compare products and explain the policy's benefits to their clients. One such measure was the policy's projected death benefit and cash values, relative to the premiums paid, and expressed through an interest-like growth rate — the internal rate of return.

Some IRRs make perfect sense, like calculating the IRR on death benefit. At any given point, it's easy to determine the death benefit's "yield" relative to the premium paid.

However, the concept of trying to do the same calculation on the cash value inside of the whole policy is fatally flawed, yet often calculated and promoted. (Again, this problem is not exclusive to whole life.)

Why? Because not all of that cash value (included in the IRR calculation) is accessible and spendable by the policyholder. So, what does this mean for the policyholder? While the inner workings of a whole life policy may not be as transparent as a universal life policy, it's important to remember that there are still "deductions" taking place inside of the policy for expenses. What you see in the illustrated cash value is the net result of the policy's inner workings. The guaranteed cash value growth inside of the whole life policy is there to provide support to the policy – not to serve as a side savings account. That's why only Paidup Additions (PUAs) can be accessed through surrenders (or loans), and the guaranteed cash value is solely accessible via policy loans.

In short — Just because the policyholder sees the cash value in the illustration or an on annual statement doesn't mean the policyholder can spend the cash value. A significant portion of that cash value has to stay behind to help cover the policy's later expenses, and to cover the interest charges that will accrue on policy loans.

Here's a simple way to explain it: Imagine you have two cars sitting side by side in a parking lot. An illustration tells you that Car A has 18 gallons of gas in the tank, and Car B has 16 gallons. Which car will be able to drive further? 18 gallons is better than 16, right?

But you know it's not that simple. The volume of gas in the tank is only one piece of the puzzle. What if Car A is a gasguzzling SUV with an oil leak, and Car B is a sleek hybrid sedan? Both need gas in the tank to move. But the gas in the tank does nothing until it gets converted by the car's engine into movement.

IRR on cash value only tells you how well the policy's design filled the tank. The same goes for simply trying to compare the amount of cash value in a policy at different ages. Those measures do nothing to tell you how efficiently the policy's design (its engine) converts the cash value into spendable dollars (its mileage).

Additionally, a whole life policy's IRR is inseparably connected to the policy's temporary DIR. A currently-higher DIR inflates the projected long-term cash value of the policy, driving up the IRR a supplemental report shows the consumer. The longer the time-horizon of the policyholder, the greater the potential disconnect between expectations and reality. Even a slight competitive edge in DIR, when its illustrated affects are compounded over an extended period, can drastically change the estimated cash value the client sees. And if/when the DIR comes down? Compounding works both ways, and the decrease in projected values will be just as dramatic.

While the potential for dividends has been, and always will be, a valuable benefit of participating whole life policies, it's vital to remember that dividends are a non-guaranteed element of the policy, and DIRs are subject to change. Dividends are not the primary benefit offered by a whole life policy. The death benefit is. The more that the success of an illustrated solution is predicated on maintaining the currently-credited DIR, the more vulnerable that concept is to not achieving its desired result. We have been, and continue to be, in a prolonged low-interest rate environment. The impact low interest rates have on DIRs is not a mystery, and should not come as a surprise to any financial professional.

Is there a better way to measure efficiency?

How then could we think about policies and which ones might be better than others? In that discussion, it's best to start thinking about how a policy is designed. Is it built with low expenses? Does it have features that support the purpose of the product? Is it, in fact, an efficiently designed policy?

Let's say your client, Courtney, wanted to both protect her family in the event of her death and also put some money away to supplement her future retirement. You could run a projection of future values (we sometimes call those illustrations) based upon a current assumed rate of return and take the final numbers as proof that one policy is better than the other. The numbers might look like the table below.

Courtney: Female Age 50, Best Class, \$20,000 Annual Premium, Maximum Ioan age 66-90

	Initial DB	CV @ 65	Cash Flow 66-90	CV @ 90
Company A	\$554,723	\$328,497	\$23,453	\$32,754
Company B	\$662,033	\$372,666	\$23,200	\$42,116

From the discussion above we know that some carriers have higher current DIRs than other, and that's going to drive higher cash value, IRR and income projections. In fact, in the example above Company B projects at a DIR that is 90 basis points higher than Company A. Therefore we should expect more cash value at age 65 for a policy with a higher DIR. We also know that the 90 point differential is unlikely to continue for the forty years that we are considering in the above example. Looking at cash value then, may not be the best way to think about how well the product delivers for our client.

Did you notice that Company A is able to distribute roughly the same amount of money as Company B. despite having considerably lower cash value at 65? Perhaps there's something in that bit of information that gives us a clue about the policies' relative efficiency. After all, if a carrier can distribute more with less, and is projecting at a significantly lower DIR, then it would make sense that this would true in many DIR scenarios. And if that's the case, maybe there's something to the design of the policy that allows this to happen.

In fact, the policy represented by Company A is Ohio National's Prestige Max policy. This policy has several design features that make it attractive from both a protection, and importantly to Courtney, a distribution perspective. First, the policy is payable only through age 65, so that once it is time to distribute income, there are no ongoing premium payments to reduce the distributions.

Second, the policy comes with a preferred loan feature. The preferred loan allows the policy holder to borrow from a Prestige Max at a reduced loan rate once the policy becomes paid up (at age 65). With a reduced cost of borrowing, more money can be distributed to the policyholder.

Third, the Prestige Max endows at age 100. This has a couple of effects. One, the guaranteed cash in the policy grows a bit more rapidly as it must be equal to the death benefit at age 100 (as opposed to age 121). Endowment at 100 also allows for higher dividends post age 100. These higher dividends can help keep the policy in force even with large loan balances.

So why does Prestige Max generate similar cash flow with less cash? It's simple, efficient design makes a difference. In fact, it can be the most important element for the product. Prestige Max has features and benefits that are contractually guaranteed that help a client pull out more of their cash value. The design is the product. And the design drives efficiency in distribution.

It's time to think about a new concept, the Distribution Efficiency Measurement, or "DEM". This is an attempt to determine how well a policy operates as a distribution tool for a policy holder. To generate DEM you only need to know two pieces of information; the total distribution amount and the gross cash value of the policy in the last year of the distribution (assuming all loans as a distribution method).

Competitive information obtained from company software believed to be accurate as of 4/1/2020. Premiums, cash values and cash flows based on the respective carriers' current loan and dividend interest rates.

Life insurance cash values grow without being subject to current taxation. Cash values can be accessed by way of policy loans without being subject to taxation. However, if tax-free loans are taken and the policy lapses, a taxable event may occur. Loans and withdrawals from life insurance policies classified as modified endowment contracts may be subject to tax at the time the loan or withdrawal is taken and, if taken prior to age 59½, a 10% federal tax

When using withdrawal to basis and then loans for distribution, then gross cash value should be measured using a projection that does not show distributions. If you use the gross cash value after taking loans you are showing less cash than the policy actually produces.

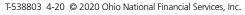
Once you have the total distribution (A) and the gross cash value (B), simply divide A by B and you will know what percent of the ultimate cash value actually got distributed to your customer. This is the DEM. The higher the ratio, the more efficient the contract. The more efficient the contract, the more likely it will perform the way you and your client expect irrespective of what the policy is projecting today.

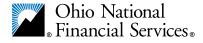
If we go back to our customer Courtney we get the following for DEM calculations:

	Total Income Received	Gross CV @ 90	Efficiency Measure
Company A	\$586,325	\$980,875	59.78%
Company B	\$580,000	1,394,974	41.58%

Following the logic above we now know that Prestige Max (Company A) has a much higher DEM than Company B. Over the ensuing forty years that Courtney owns her policy it is likely that irrespective of the interest rate environment, she will have more cash flow from a policy with a higher DEM than one with a lower DEM.

Measuring efficiency matters


Why is the Efficiency Measure important? Because the dividend interest rates upon which we project cash values will go up and they will go down over time. The company with a higher rate today will one day be below the other. Fundamentally, all carriers invest in much the same assets; investment grade corporate bonds and commercial mortgages. For periods of time, one or another may be higher but that period of success is always temporary. What won't change is how the contract is built – because it's a contract, it can't change. The more efficient your client's policy, the more effective it will be over time at accomplishing the goals that your clients wants to achieve.


penalty may apply. Withdrawals and loans reduce the death benefit and cash surrender value.

Whole life insurance is issued by The Ohio National Life Insurance Company. Prestige Max is a variation of the marketing name for Prestige Max III, issued as Policy Forms 06-PW-1/1U 07-PTD-1 and any state variations. Guarantees are based on the claims-paying ability of the issuer. Dividends are not guaranteed. Products, product features, and rider availability vary by state. The issuer is not licensed to conduct business in New York.

The Ohio National Life Insurance Company

One Financial Way | Cincinnati, Ohio 45242 | 513.794.6100 | ohionational.com Post Office Box 237 | Cincinnati, Ohio 45201-0237

